Topic outline

  • General

    The course will cover a number of areas including the molecular mechanisms of selected common diseases including analysis of genetic diseases, amyloid diseases, the role of kinases in cancer, molecular understanding of diabetes, viral and bacterial infections, ion channels diseases, muscle diseases, neuro-degeneration, thrombosis and metabolic diseases. Selected topics will be covered in each year
  • Topic 1

    The Molecular Basis of Cancer arms you with the latest knowledge and cutting-edge advances in the battle against cancer. This thoroughly revised, comprehensive oncology reference explores the scientific basis for our current understanding of malignant transformation and the pathogenesis and treatment of this disease. A team of leading experts thoroughly explains the molecular biologic principles that underlie the diagnostic tests and therapeutic interventions now being used in clinical trials and practice. Detailed descriptions of topics from molecular abnormalities in common cancers to new approaches for cancer therapy equip you to understand and apply the complexities of ongoing research in everyday clinical application.
  • Topic 2

    The revolution in cancer research can be summed up in a single sentence: cancer is, in essence, a genetic disease. In the last decade, many important genes responsible for the genesis of various cancers have been discovered, their mutations precisely identified, and the pathways through which they act characterized.
  • Topic 3

    The assembly of HIV is relatively poorly investigated when compared with the process of virus entry. Yet a detailed understanding of the mechanism of assembly is fundamental to our knowledge of the complete life cycle of this virus and also has the potential to inform the development of new antiviral strategies. The repeated multiple interaction of the basic structural unit, Gag, might first appear to be little more than concentration dependent self-assembly but the precise mechanisms emerging for HIV are far from simple. Gag interacts not only with itself but also with host cell lipids and proteins in an ordered and stepwise manner. It binds both the genomic RNA and the virus envelope protein and must do this at an appropriate time and place within the infected cell. The assembled virus particle must successfully release from the cell surface and, whilst being robust enough for transmission between hosts, must nonetheless be primed for rapid disassembly when infection occurs.
  • Topic 4

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The disease is characterized by a wide variability of clinical expression. The cloning of the CFTR gene and the identification of its mutations has promoted extensive research into the association between genotype and phenotype. Several studies showed that there are mutations, like the delta F508 (the most common mutation worldwide), which are associated with a severe phenotype and there are mutations associated with a milder phenotype. However, there is a substantial variability in disease expression among patients carrying the same mutation. This variability involves also the severity of lung disease. Furthermore, increased frequencies of mutations are found among patients with incomplete CF expression which includes male infertility due to congenital bilateral absence of the vas deferens. In vitro studies of the CFTR function suggested that different mutations cause different defects in protein production and function. The mechanisms by which mutations disrupt CFTR function are defective protein production, processing, channel regulation, and conductance. In addition, reduced levels of the normal CFTR mRNA are associated with the CF disease. These mutations are associated with a highly variable phenotype from healthy individuals or infertile males to a typical CF disease. This variability in disease expression is associated with different levels of normally spliced transcripts.
  • Topic 5

    The rapid increase in the prevalence of type 2 diabetes (T2D) represents a major challenge for health care delivery worldwide. Identification of genes influencing individual susceptibility to disease offers a route to better understanding of the molecular mechanisms underlying pathogenesis, a necessary prerequisite for the rational development of improved preventative and therapeutic methods. The past decade has seen substantial success in identifying genes responsible for monogenic forms of diabetes (notably, maturity-onset diabetes of the young), and, in patients presenting with early-onset diabetes, a precise molecular diagnosis is an increasingly important element of optimal clinical care. Progress in gene identification for more common, multifactorial forms of type 2 diabetes has been slower, but there is now compelling evidence that common variants in the PPARG, KCNJ11 and CAPN10 genes influence T2D-susceptibility, and positional cloning efforts within replicated regions of linkage promise to deliver additional components of inherited susceptibility.
  • Topic 6

    Obesity has increased at an alarming rate in recent years and is now a worldwide public health problem. In addition to suffering poor health and an increased risk of illnesses such as hypertension and heart disease, obese people are often stigmatized socially. But major advances have now been made in identifying the components of the homeostatic system that regulates body weight, including several of the genes responsible for animal and human obesity. A key element of the physiological system is the hormone leptin, which acts on nerve cells in the brain (and elsewhere) to regulate food intake and body weight. The identification of additional molecules that comprise this homeostatic system will provide further insights into the molecular basis of obesity, and possibilities for new treatments.
  • Topic 7

    Atrophy occurs in specific muscles with inactivity (for example, during plaster cast immobilization) or denervation (for example, in patients with spinal cord injuries). Muscle wasting occurs systemically in older people (a condition known as sarcopenia); as a physiological response to fasting or malnutrition; and in many diseases, including chronic obstructive pulmonary disorder, cancer-associated cachexia, diabetes, renal failure, cardiac failure, Cushing syndrome, sepsis, burns and trauma. The rapid loss of muscle mass and strength primarily results from excessive protein breakdown, which is often accompanied by reduced protein synthesis. This loss of muscle function can lead to reduced quality of life, increased morbidity and mortality. Exercise is the only accepted approach to prevent or slow atrophy. However, several promising therapeutic agents are in development, and major advances in our understanding of the cellular mechanisms that regulate the protein balance in muscle include the identification of several cytokines, particularly myostatin, and a common transcriptional programme that promotes muscle wasting. Here, we discuss these new insights and the rationally designed therapies that are emerging to combat muscle wasting
  • Topic 8

    Hematopoiesis is characterized by a rapid,continuous turnover of cells.Normall,,production of specific blood cells from their stem cells precursors is carefully regulated according to body’s need.If the mechanism that control the production of these cells are disrupted ,the cells can proliferate excessively.Hematopoietic malignancies are often classified by cells involved.LEUKEMIA is a neoplastic proliferation of one particular cell type (granulocytes,monocytes,lymphocytes,or infrequently RBCs). Acute myeloid leukemia (AML) is a cancer of the blood and bone marrow. It usually progresses quickly if it is not treated. The disease accounts for about 10,600 new cases of leukemia each year, and it occurs in both adults and children.
  • Topic 10

    The thalassemias are a group of inherited hematologic disorders caused by defects in the synthesis of one or more of the hemoglobin chains. Alpha thalassemia is caused by reduced or absent synthesis of alpha globin chains, and beta thalassemia is caused by reduced or absent synthesis of beta globin chains. Imbalances of globin chains cause hemolysis and impair erythropoiesis. Silent carriers of alpha thalassemia and persons with alpha or beta thalassemia trait are asymptomatic and require no treatment. Alpha thalassemia intermedia, or hemoglobin H disease, causes hemolytic anemia. Alpha thalassemia major with hemoglobin Bart's usually results in fatal hydrops fetalis. Beta thalassemia major causes hemolytic anemia, poor growth, and skeletal abnormalities during infancy. Affected children will require regular lifelong blood transfusions. Beta thalassemia intermedia is less severe than beta thalassemia major and may require episodic blood transfusions. Transfusion-dependent patients will develop iron overload and require chelation therapy to remove the excess iron. Bone marrow transplants can be curative for some children with beta thalassemia major. Persons with thalassemia should be referred for preconception genetic counseling, and persons with alpha thalassemia trait should consider chorionic villus sampling to diagnose infants with hemoglobin Bart's, which increases the risk of toxemia and postpartum bleeding. Persons with the thalassemia trait have a normal life expectancy. Persons with beta thalassemia major often die from cardiac complications of iron overload by 30 years of age.
  • Topic 11

    Hemophilia A is an X-linked hereditary bleeding disorder due to the deficiency of coagulation factor VIII (FVIII). According to the degree of FVIII deficiency, mild, moderate or severe forms are recognized. Although patients with mild hemophilia A usually bleed excessively only after trauma or surgery, those with severe hemophilia experience frequent episodes of spontaneous or excessive bleeding after minor trauma, particularly into joints and muscles. The modern management of hemophilia began in the 1970s and is actually based upon several plasma-derived or recombinant FVIII products. In addition, the synthetic drug desmopressin can be used to prevent or treat bleeding episodes in patients with mild hemophilia A. Long-term and continuous substitution therapy (prophylaxis), the recommended treatment in severe hemophilia, prevents bleeding and the resultant joint damage. In the last twenty years the high standard of hemophilia care has greatly improved the quality of life of patients and their life expectancy has reached that of the non-hemophilic male population, at least in high-income countries. The most serious and challenging complication of treatment of hemophilia A is the development of inhibitors, which renders FVIII concentrate infusion ineffective and exposes patients to an increased risk of morbidity and mortality.
  • Topic 12

    Programmed cell death The classification of cell death can be based on morphological or biochemical criteria or on the circumstances of its occurrence. Currently, irreversible structural alteration provides the only unequivocal evidence of death; biochemical indicators of cell death that are universally applicable have to be precisely defined and studies of cell function or of reproductive capacity do not necessarily differentiate between death and dormant states from which recovery may be possible. It has also proved feasible to categorize most if not all dying cells into one or the other of two discrete and distinctive patterns of morphological change, which have, generally, been found to occur under disparate but individually characteristic circumstances. One of these patterns is the swelling proceeding to rupture of plasma and organelle membranes and dissolution of organized structure—termed “coagulative necrosis.” It results from injury by agents, such as toxins and ischemia, affects cells in groups rather than singly, and evokes exudative inflammation when it develops in vivo. The other morphological pattern is characterized by condensation of the cell with maintenance of organelle integrity and the formation of surface protuberances that separate as membrane-bounded globules; in tissues, these are phagocytosed and digested by resident cells, there being no associated inflammation.
  • Topic 13

    WOUND REPAIR - Wound healing remains a challenging clinical problem and correct, efficient wound management is essential. Much effort has been focused on wound care with an emphasis on new therapeutic approaches and the development of technologies for acute and chronic wound management. Wound healing involves multiple cell populations, the extracellular matrix and the action of soluble mediators such as growth factors and cytokines. Although the process of healing is continuous, it may be arbitrarily divided into four phases: (i) coagulation and haemostasis; (ii) inflammation; (iii) proliferation; and (iv) wound remodelling with scar tissue formation. The correct approach to wound management may effectively influence the clinical outcome.
  • Topic 14

    Journal Club. Select a paper and present it
    • Topic 15

      Extracellular matrix and cancer